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Metabolomics and machine learning technique
revealed that germination enhances the multi-
nutritional properties of pigmented rice

Rhowell Jr. N. Tiozon'2, Nese Sreenivasulu', Saleh Alseekh® 2, Kristel June D. Sartagoda 1 Bjorn Usadel 3&
Alisdair R. Fernie® 2%

Enhancing the dietary properties of rice is crucial to contribute to alleviating hidden hunger
and non-communicable diseases in rice-consuming countries. Germination is a bioprocessing
approach to increase the bioavailability of nutrients in rice. However, there is a scarce
information on how germination impacts the overall nutritional profile of pigmented rice
sprouts (PRS). Herein, we demonstrated that germination resulted to increase levels of
certain dietary compounds, such as free phenolics and micronutrients (Ca, Na, Fe, Zn,
riboflavin, and biotin). Metabolomic analysis revealed the preferential accumulation of
dipeptides, GABA, and flavonoids in the germination process. Genome-wide association
studies of the PRS suggested the activation of specific genes such as CHST and UGT genes
responsible for increasing certain flavonoid compounds. Haplotype analyses showed a sig-
nificant difference (P < 0.05) between alleles associated with these genes. Genetic markers
associated with these flavonoids were incorporated into the random forest model, improving
the accuracy of prediction of multi-nutritional properties from 89.7% to 97.7%. Deploying
this knowledge to breed rice with multi-nutritional properties will be timely to address double
burden nutritional challenges.
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of the global population. Brown rice is an unpolished whole

grain with an intact outer bran layer, embryo, and endo-
sperm. Dietary fiber, amino acids, phytosterols, phenolics, and y-
aminobutyric acid (GABA), among others, are known to be
present in brown rice. However, a large body of evidence has
found that these compounds are more abundantly present in
pigmented rice varieties. Over the past decade, scientific research
on pigmented rice has substantiated its superiority over milled
white rice. While white rice is more popularly consumed than
pigmented rice, the loss of both the bran and the embryo during
the refining process subsequently leads to nutrient loss!, which
may expose heavily dependent communities to dietary defi-
ciencies and noncommunicable illnesses.

Germination has been established as an inexpensive biopro-
cessing strategy to induce the enrichment of nutrients and its
bioavailability in cereal and seeds. The transformation from a
dormant to a living seed involves complex, coordinated molecular
processes dependent on the concurrent expression of a number of
genes and influenced by a number of environmental conditions?.
The process reactivates metabolic pathways, resulting in the
breakdown of stored proteins and carbohydrates and the synth-
esis and accumulation of an array of metabolites with diverse
structures and abundance?. Compared to brown rice, germinated
brown rice has a greater concentration of crude proteins, carbo-
hydrates, phenolic compounds, y-oryzanol, dietary fiber, and
essential amino acids such as leucine, lysine, phenylalanine,
valine, alanine, glycine, and GABA®. Taken together, germinated
rice demonstrates more nutritional benefits than its quiescent
counterpart. Many studies have proven that pigmented rice has
higher bioactive compounds than non-pigmented rice®. However,
there is scarce information on the comprehensive nutritional
composition of pigmented rice sprouts (PRS).

Advances in powerful, efficient, and high throughput detection
methodologies have led to the intensive application of various
metabolomic platforms to decipher the metabolite profile of
various cereal crops, including multiple rice varieties at different
development stages>”. However, linking metabolite accumulation
to the biochemical pathways involved in the germination of
genetically varied pigmented rice remains obscure, as does
deploying appropriate breeding approaches to leverage this
information in specific selection programs. Furthermore, models
that use the multi-pronged nutritional qualities of minerals,
vitamins, and other secondary metabolites to categorize a col-
lection of PRS varieties into unique ideotypes have not been
developed to date. The present work aimed to (1) provide a more
comprehensive understanding concerning the identification,
quantification, and dynamics of nutrients and bioactive com-
pounds in PRS varieties through high-resolution mass
spectrometry-based metabolomics, (2) correlate pigmented rice
performance with metabolite expression during germination and
relate those metabolites to underlying biochemical pathways, (3)
identify potential genetic variants influencing diverse health-
promoting metabolic targets using metabolite genome-wide
association study (mGWAS), and (4) link the generated big
data to predict the nutritional classes of diverse germplasms of
pigmented rice and identify rice varieties or accessions with
superior dietary composition and health benefits.

Rice (Oryza sativa L.) is a major staple cereal grain for most

Results

Germination enhances the free phenolics and certain micro-
nutrients. The dietary properties of pigmented rice sprouts were
investigated to evaluate the effects of the germination process.
Figure la demonstrates that germinated pigmented rice samples
contained elevated levels of free phenolic compounds. In

particular, there was a significant increase in these compounds in
variable purple samples. Concurrently, there is a decrease in
bound phenolics upon germination. As shown in Fig. laiii-iv,
both free and bound proanthocyanidins have decreased
throughout the germinated samples. The significant decrease in
proanthocyanidins (tannins) during germination, may account
for the substantial increase in bioaccessibility of the minerals.
Figure 1b and Supplementary Data 1 demonstrate that germi-
nation resulted in elevated levels of minerals, including Ca, Na,
Zn, and Fe, throughout the colored rice samples. Other minerals
were not substantially affected by germination, as illustrated in
Supplementary Fig. 1.

Figure 1lc displays the vitamins identified and quantified by
targeted metabolomics. Among water-soluble vitamins, the ribo-
flavin content of germinated rice increased dramatically. The
average riboflavin content (mg/100g) in PRS is 0.83 (range:
0.19-2.77). After germination, the average amount of biotin (ug/
100 g) in colored rice rose to 0.14 (range: 0-3.00). In fact, the biotin
content in variable purple rice sprouts significantly increased, with
a few lines of germinated purple and red rice also exhibiting high
biotin content All rice samples exhibited a decrease in pantothenic
acid content upon germination, suggesting that it may be
catabolized to facilitate germination. However, the exact mechan-
ism through which this occurs remains unknown. In contrast,
there were no significant changes in the 10-methyltetrahydrofolate
concentration following germination. Figure lc(v) demonstrates
that when colored rice is germinated, the a-tocopherol content of
variable purple samples decreases significantly. Among germinated
samples, pigmented rice had a higher average alpha-tocopherol
content than non-pigmented rice, whereas variable purple sprouts
have excellent levels of this compound.

The phenolics and micronutrients induced by the germination
process were used as input variables to develop models for
predicting the multi-nutritional quality of PRS. The clustering
(Fig. 2) generated four distinct groups with diverse multi-
nutritional profiles: Cluster 1 (n=96) consists of lines that are
deficient in GABA, vitamins, and minerals; Cluster 2 (n=122)
consists of lines that are abundant in folate, pantothenic acid,
alpha-tocopherol, and sodium; Cluster 3 (n = 55) consists of lines
that are abundant in GABA, riboflavin, biotin, calcium, and iron;
and Cluster 4 (n=16) which demonstrated strong antioxidant
capacity and high zinc and folate contents (Supplementary Fig. 2).
To minimize overfitting, the dimensionality reduction via
correlation filter was applied, reducing the number of input
variables to 19 (Supplementary Fig. 3). The models were tuned,
and the optimized hyperparameters were summarized in
Supplementary Data 2. Supplementary Fig. 4 plot demonstrates
the mean decrease accuracy of the variables. Ca, total proantho-
cyanidin content (TPAC), and folate exhibited the highest mean
decrease accuracy implying their importance in classifying the
samples. In this study, a random forest (RF) was deployed to
classify the multi-nutritional components of PRS, which comprise
metabolites, GABA, vitamins, minerals, and antioxidants. The
generated model has an accuracy of 89.7%, indicating that it is
sufficiently accurate to be used for the selection of PRS variants to
predict multi-nutritional properties. The confusion matrix
generated by RF (Fig. 2) showed high true positive rates (TPR)
for most clusters, with the exception of Cluster 4 due to the
smaller number of members in this group. Hence, the following
section explores ways to further improve the accuracy of the
model by incorporating genetic markers.

Differentially accumulated metabolites in germinated and non-
germinated rice samples. Through the UPLC-Q-Exactive Orbi-
trap-MS, over 600 annotated metabolites belonging to 20 families
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Fig. 1 Germination alters different nutritional compounds. a The process of germination enhanced free phenolics and free anthocyanins while lowering
their bound counterparts (in mg/100 g rice): (i) free phenolics (ii) free anthocyanins, (iii) free proanthocyanidins, (iv) bound phenolics, (v) bound
anthocyanins, and (vi) bound proanthocyanidins, b Germination process enhanced certain minerals (in mg/kg): (i) calcium, (ii) sodium, (iii) zinc, (iv) iron,
(v) aluminum, (vi) potassium, ¢ Some vitamins have increased after the germination process: (i) Riboflavin, (ii) Pantothenic acid, (iii) Biotin, (iv) 10-
Formyltatrehydrofolate, (v) alpha-tocopherol. In the boxplot, the solid middle line depicts the median, while the lower and upper whiskers signify the 25th
and 75th percentiles, respectively. (GLB Germinated Light brown, GP Germinated Purple, GR Germinated Red, GVP Germinated Variable Purple, MLB
Matured (non-germinated) Light brown, MP non-germinated Purple, MR non-germinated Red, MVP non-germinated variable purple).
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Fig. 2 Random Forest model determined four clusters based on nutritional parameters. TPR True Positive Rate, FNR False Negative Rate, GABA gamma
amino butyric acid, Na sodium, Ca Calcium, Fe iron, Zn zinc, TPC Total Phenolic Content, TFC Total Flavonoid Content, TAC Total Anthocyanin Content,
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which represents the false negative rates.

of chemicals were identified in the methanolic extract of PRS
(Fig. 3a). The greatest portion of the metabolites was character-
ized in the groups of phenylpropanoids (38.99%), amino acids,
peptides, and analogs (38.07%), and lipids and lipid-like mole-
cules (10.78%). Figure 3b, ¢ shows that the differentially regulated
metabolites distinguished between germinated and non-
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germinated seeds. In examining the top differentially accumu-
lated metabolites, amino acids and their derivatives obtained the
highest VIP scores (Fig. 3d). It is noteworthy that many unknown
peaks were clustered together with the group of peptides and
flavonoids. Using the annotated metabolites in the pathway
impact analysis unveiled significant alterations in butanoate,
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Fig. 3 Metabolomic approach has shown differentially expressed metabolites between germinated (GermRice) and non-germinated (NGermRice)
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which concentrations are normalized, log-transformed, and scaled (—10 to +10), ¢ partial least squares-discriminant analysis (PLS-DA) plot that shows
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samples, respectively. d Variable Importance in the Projection (VIP) scores from PLS-DA plot that shows the top important metabolites that distinguished
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flavonoid, and amino acid metabolism, including alanine, aspar-
tate, tyrosine, and glutamate upon the germination process
(Fig. 3e). Furthermore, the enrichment analysis of the main
compound classes confirmed the presence of dipeptides and
amino fatty acids, with notable increases in GABA and other
aromatic amino acids observed upon germination (Fig. 3f). These
findings highlight the dynamic metabolic changes that occur
during the germination process and shed light on the enhanced
nutritional composition of the germinated rice samples. Germi-
nated variable purple rice had a broad range of GABA levels
(0.09-80.24 mg/100 g rice), while red rice samples had the highest
average content (14.46 mg/100g rice) (Supplementary Fig. 5).
Correlation analysis done on this work corroborates the accu-
mulation of GABA in PRS as there is a strong positive correlation
between GABA and Glu-Leu dipeptide levels (correlation = 0.95),
as well as other dipeptides containing Glu units (Supplementary
Data 3).

Figure 4 indicates that various flavonoid biosynthetic pathways
may potentially be activated during the germination process. The
germination process resulted in the production of higher
naringenin chalcone serving as an intermediate of flavonoid
compounds. Upstream of naringenin chalcone, flavones, such as
apigenin and tricin derivatives, accumulate in the germinated
seeds. Germination demonstrated a preferential increase in
p-coumaric acid over cinnamic acid as intermediates in the
formation of phenolic compounds (Supplementary Fig. 6).
Consistent with this notion, downstream compounds from
p-coumaric acids, such as caffeic acid and ferulic acid, are also
upregulated. In fact, ferulic acid was found to be elevated on

average by 8-fold in germinated samples, particularly in purple
and variable purple (Supplementary Fig. 5). This considerable
increase may be attributed to the liberation of some ferulic acids
from their bound form, which is consistent with the previously
mentioned findings and other brown rice germination
experiments’. Concurrently, ferulic-derived glycosides, such as
feruloyl glucoside and feruloyl hexoside, have increased with
germination. Furthermore, other flavonoid glycosides such as
isorhamnetin-3-O-glucoside, — quercetin-3-D-galactoside, and
kaempferol rutinoside rose upon germination (Fig. 4 and
Supplementary Fig. 5).

The genetic markers from induced flavonoids and machine
learning to classify dietary properties of rice sprouts. Single-
locus and multi-locus genome-wide association studies (GWAS)
using a set of 558,526 high-quality biallelic single nucleotide
polymorphism (SNP) markers resulted in identifying potential
key genes influencing the production of specific secondary
metabolites preferentially regulated in germinating sprouts
(Supplementary Fig. 7). This metabolite-GWAS (mGWAS)
approach has identified 47 candidate genes for eight flavonoids
which accumulated preferentially in the PRS (Fig. 5a). Among
these genes, both single-locus and multi-locus GWAS revealed
OsUGT (represented by LOC_0Os06g18670) on Chromosome 6 as
the gene of interest in Kaempferol 3-glucoside-7-rhamnoside
(K3G7R). The allelic variation in the samples associated with this
genetic region revealed that samples that constitute the “A” allele
contain significantly greater average content of K3G7R over the
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a Association network summary of candidate genes linked with the compounds

induced by the germination process. The central nodes represent the metabolite of interest, and the smaller nodes are the associated loci and candidate
genes, b boxplot showing the allelic variants from the genes of interest resulted from single-locus GWAS, ¢ protein-protein interactions predicted for CHS1
and UGT genes, d improved Random Forest model incorporating the genetic markers. In the boxplot, the solid middle line depicts the median, while the
lower and upper whiskers signify the 25th and 75th percentiles, respectively. P-values were obtained by Wilcoxon-Mann-Whitney-Test. The rank-biserial
correlation (r) was used to present the effect size estimation. The confusion matrix consists of a blue gradient, which represents the true positive rate, and

an orange gradient, which represents the false negative rates.
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“C” allele (Fig. 5b). Further genetic analyses were conducted to
examine the increase in naringenin chalcone levels after germi-
nation. Chalcone synthase 1 (CHSI) (represented by
LOC_Os11g32650), resulted in the single-locus GWAS as the
most significant gene (-log;oP = 10.21), which corresponds to its
role in the synthesis and accumulation of naringenin chalcone. In
fact, Fig. 5¢ demonstrates the interaction between CHSI and
OsUGT.

To test the hypothesis whether deploying these genetic markers
identified from mGWAS will allow prediction of multi-
nutritional properties of PRS, the genetic markers determined
from the single-locus and multi-locus GWAS analyses of the
metabolites were filtered before incorporating into the RF model.
This model has the capability to classify a vast collection of
germinated rice based on their dietary properties. Dimensionality
reduction was accomplished by analyzing the linkage disequili-
brium between the markers within the same genetic region and
taking the correlation filter into account. The top genetic markers
were then obtained by calculating their relative importance scores
in the RF model (Supplementary Figure 8). The markers that
were added to the model were OsUGT (LOC_Os06g18670),
OsCHI ~ (LOC_Os11g32650),  OsFbox446(LOC_Os08g3482),
LOC_0Os01g59780, LOC_0s09g17500, LOC_0Os08g21140,
OsCLE205 (S02_34577685), LOC_0Os04g05360, and OsEX-
O70FX5 (LOC_0s09g17810) in addition to the previous input
variables such as GABA, vitamins, minerals, antioxidant
component, and capacity. The overall accuracy of the RF model
increased from 89.7% to 97.7% upon the incorporation of the
genetic markers (Fig. 5d). More importantly, the superior cluster
4 group enriched for higher antioxidant property enriched with
TPC, TFC, TPAC, and TAC true positive rate increased from
44.4% to 100%, conferring the importance of diagnostic markers
of mMGWAS targets.

Discussion

Germination has been shown to induce new metabolites and
enhance their bioavailability. Kim et al. (2020) demonstrated that
the germination of brown rice induced compounds belonging to
the class of acidic compounds, amino acids, sugars, and lipid
metabolites”. GABA and dipeptides consisting mostly of essential
amino acids such as tryptophan, phenylalanine, lysine, methio-
nine, and threonine, were the most abundant metabolites in all
germinated rice varieties. Similar outcomes were seen in germi-
nating other cereals, such as wheat and triticaleS. During germi-
nation, enzymatic hydrolysis of storage proteins initiates a
reservoir of small peptides that are translocated to the growing
embryo for nutritional supply. It has been shown that the transfer
of these nutritive peptides by particular peptide transporters
contributes to the growth and development of Arabidopsis and
several monocots, such as rice’. Compared with non-pigmented
samples, PRS had elevated levels of dipeptides constituting aro-
matic amino acids such as tyrosine, tryptophan, and phenylala-
nine. This observation may be attributed to the formation of
soluble phenylpropanoids in the pigmented samples, as these
aromatic amino acids play vital roles in the phenylpropanoid
pathway!0. The characterization and the possible role of these
peptides may be elucidated by further proteomic analysis in PRS.
For instance, quantitative shotgun proteomics of germinated
brown rice revealed proteins associated with gibberellin signaling,
protein trafficking, and the ABA-mediated stress response!l. It is
generally known that germination produces GABA, and its
synthesis and role as a functional nutrient have been well
established®. Various conditions, such as varying water content,
pressure level, and incorporation of antimicrobial polymers, were
tested to enhance the biosynthesis of GABA content in brown

rice>. However, the GABA content of PRS has not been thor-
oughly explored. In the analyzed rice samples, PRS has a greater
proportion of GABA than its non-pigmented equivalent. In tea
plants, the metabolic flux to increase GABA is positively asso-
ciated with genes involved in catechin biosynthesis'2. Conse-
quently, the buildup of GABA in red rice may be linked to its
high catechin concentration. However, further explorations are
necessary to validate the preferential accumulation of GABA in
colored rice samples. In rice and higher plants, GABA is pro-
duced from L-glutamic acid (Glu) as it is catalyzed by glutamic
acid decarboxylase through the GABA shunt pathway.

Certain phenolic compounds were also found to be differentially
accumulated in the germinated seeds. For instance, the increase in
flavones may be attributed to their presumed function as the initial
line of defense against environmental stressors during germination,
indicating that specific flavones may play a crucial role in the rice
seed germination process as well as early seedling development.
The preferential increase in p-coumaric acid over cinnamic acid
can be attributed to the role of trans-cinnamate 4-monooxygenase
in the conversion of these two compounds. The increase in
p-coumaric acid brought about an increase in the coumarin-
glycosylated compounds such as p-coumaroyl-feruloyl diglucoside
and p-coumaroylglucoside, coumaroylgalactarate, and p-
coumaroyl-sinapoyldiglucoside (Fig. 4b). The increase in the fla-
vonoid glycosides can be attributed to the activation of UDP-
glucuronosyltransferases (UGT) during the germination process.
Although it is known that flavonoid glycosides accumulate in
plants in response to abiotic stressors, their role in germination
remains unclear. Despite this, flavonoid glycosides have been
extensively researched for their beneficial pharmacological effects
on human health!3. On the other hand, the decrease in the agly-
cone moiety such as quercetin and kaempferol may be due to the
overexpression of UGT favoring the production of their counter-
part glycosylated flavonoids. Unsurprisingly, water-soluble antho-
cyanins such as cyanidin-3-O-glucoside, delphinidin-3-O-
galactoside, and delphinidin-3-O-rutinoside decreased in the pro-
cess (Fig. 4b), which can be attributed to their tendency to diffuse
into the soaking water during germination. Anthocyanins are also
light-sensitive and prone to degradation, which could possibly
explain the decreased levels after the germination process. Besides
the ability of flavanols such as catechin and epicatechin to dissolve
in water, the downregulation of these compounds may also be
beneficial for seed growth because, as demonstrated in other plant
species, higher levels of these compounds may inhibit the process
of seed germination!“. Because catechin and epicatechin are the
most prevalent monomers of tannins in rice, the decrease in these
flavanols confirms the decrease in the bound form of condensed
tannins (Fig. 1).

Numerous investigations on a variety of cereals and pulses
have shown that germination increases the concentration of
phenolic compounds!®. For instance, the germination of brown
rice enhanced its total phenolic and flavonoid content!®. The
observed increase in free phenolics may be ascribed to
germination-activated enzymes capable of degrading storage
macromolecules and liberating bound phenolics. Furthermore,
the increase in the free phenolics may be linked to the synthesis of
new phenolic compounds upon germination. These results cor-
roborate the observed transformation of bound and free phe-
nolics during germination reported in other cereals!®. The impact
of germination on proanthocyanidins has paradoxical effects on
human health, as they are both antioxidants and anti-nutrients
that inhibit the absorption of certain minerals. Jia et al. (2012)
reported that proanthocyanidins inhibit seed germination by
increasing abscisic acid levels in germinating plants!”. Clearly, the
reduction in proanthocyanidins is beneficial for the seed germi-
nation of colored rice.
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Mineral concentration, solubility, and bioavailability may be
affected by germination or pre-germination!$. In finger millet and
green gram, for instance, the germination process decreased zinc
bioavailability while increasing iron concentration!®. In contrast,
earlier research showed that germination increased the zinc
content of brown rice?%2!. The significant rise in the divalent
cations (Ca?+, Zn?2+, and Fe2 +) is consistent with the fact
that germination reduces the phytic acid concentration, which
may chelate strongly with these minerals?!. Tannins may also
influence the bioavailability of minerals through the formation of
complexes. Among the minerals, the K content of rice decreased
upon germination, validating earlier observations*223, In fact,
reduced K levels lead to increase seed germinability and can be
applied as a biomarker for the germination capacity of seeds?3.

Whole-grain rice contains an appreciable amount of vitamins
with critical health functions?4. The increase in some B-vitamers
in various edible seeds was quantified and traced to germination.
Shohag et al. (2012) reported that sprouting soybean and
mungbean increased their folate content by 65-274% and
78-326%, respectively?>. In addition, sprouting buckwheat
increased its vitamin B1 and B6 levels to about 11.8 mg/100 g dry
weight?6. Similarly, the B1 and B6 vitamin content of brown rice
surged following germination?’. This finding indicates that a
100 g of riboflavin-enriched, pigmented rice sprouts is adequate
to fulfill the current RDA for riboflavin in adults (1.0-1.7 mg/
day)?4. During seed development, riboflavin acts as a precursor of
essential cofactors and plays a key role in coordinating cellular
energy and cell cycle?8. It has also been linked to higher levels of
superoxide dismutase during seed germination, indicating its
potential to scavenge superoxide anion radicals?®. Biotin is a
cofactor for various enzymes that catalyze carboxylation, dec-
arboxylation, and transcarboxylation reactions in several vital
metabolic processes. Wang et al. (2020) revealed that biotin could
assist in the germination process of Arabidopsis under stress30. As
shown in the succeeding sections, biotin is an essential cofactor
for fatty acid synthesis, supporting the accumulation of important
lipid compounds in PRS. However, the exact mechanism of biotin
accumulation in PRS is yet to be deciphered. Nevertheless, the
increase in biotin can only enhance the nutritional value of PRS.
In fact, a 100-g portion of the biotin-enriched purple rice (var.
WC 603) provides 10% of the recommended intake of biotin for
adults (30 ug/day)?“. Pantothenic acid, which is present in plants,
has a role in the metabolic processes of glucose and fatty acid
production through its function as a cofactor in the synthesis of
ACP and CoA3l. Previous studies have demonstrated that the
impact of germination on folate content varies by plant type°.
The ambiguous findings may be due to the fact that folate con-
centrations are highly dependent on the physiological state of the
plants and their equilibrium within plant compartments2>. Fur-
ther examination of the influence of germination at various time
points on all folate vitamers will shed light on the function of
folate in the stages of germination in pigmented rice.

Tocopherols, widely known as vitamin E, are fat-soluble vita-
mins that comprise four isomers, namely, a-, B- 6-, and y-
tocopherols. The impact of germination on vitamin E content in
seeds has been observed in other crops. For instance, germination
has been shown to increase the levels of tocopherols and toco-
trienols in grape seeds (Vitis vinifera L. cv. Albert Lavallée)3?,
while decreasing the total vitamin E content of Lupinus albus L.
var. Multolupa sprouts33, Although high tocopherol concentra-
tion is nutritionally beneficial, it must be regulated since it may
diminish seed viability%. To understand the probable effect of
germination and its possible mechanism, assessing the variations
in levels of all vitamin E isoforms warrants further research. The
selected nutritional parameters were input variables to build a
classification model to predict their dietary classes. Random

Forest (RF) model can accurately predict clusters based on the
multi-nutritional properties of PRS. Previously, we reported that
RF could classify the antioxidant component and capacity of
pigmented rice samples®. Herein, we utilized RF to cluster the
samples based on the multi-nutritional properties. Cluster 1
represents inferior lines with respect to dietary properties as it has
low GABA and micronutrient content. The rice lines in cluster 4
could serve as important donor lines as they have relatively higher
antioxidant content and capacity, however, the TPR needs to be
further increased to enhance the quality of the model. Targeted
breeding programs may use the findings of cluster analyses as
screening criteria to identify varieties with better multi-
nutritional components. However, screening vast quantities of
rice varieties manually is time-consuming and inefficient. Using
an accurate classification model to predict a variety to a certain
cluster has proven to be an effective approach for selecting and
recommending superior lines for dietary purposes.

Genetic analysis of the differentially abundant metabolites in
PRS sheds insights into the genetic regulation of these metabolites
during rice germination. Flavonoid glycosides like kaempferol
glycoside increased in PRS and the present study identified the
importance of eight candidate genes (Table 1). The top gene for
K3G7R which is OsUGT were also associated with other glyco-
sylated flavonoids such as quercetin glucoside, methyl-quercetin
glucoside, and isorhamnetin-3-glucoside, as well as two unknown
flavonoids. Peng et al. (2017) revealed that OsUGTs influence the
natural variation of rice flavones and may have a vital effect on
rice stress tolerance®®. Our findings confirmed that the upregu-
lation of certain glycosylated flavonoids in PRS may potentially be
attributed to the effect of UGT expression during the germination
process. Besides the role of the UGT gene in catalyzing the gly-
cosylation of most flavonoids, it also plays a major effect in grain
pigmentation due to its contribution to anthocyanin and proan-
thocyanidin biosynthesis®. Besides OsUGT, single-locus GWAS
revealed that OsC3HI2 (represented by LOC_Os01g68860) is
involved in the germination and alteration of K3G7 content. The
OsC3H12 belongs to the family of OsC3H zinc finger proteins in
the plant, which responds to ABA and GA during seed germi-
nation by altering the RNA metabolism of stress-responsive
genes®’. It can be surmised that K3G7 metabolite is one of the
flavones released by the PRS in response to the alteration in the
stress-responsive genes. However, further investigations are nee-
ded to confirm the mechanism. Chalcone synthase (CHS) cata-
lyzes the primary committed step in rice flavonoid biosynthesis
and is highly conserved across plant species®®. In comparing the
allelic variation in the CHSI gene, lines containing the “A” allele
demonstrated a significantly higher average concentration of
naringenin chalcone over the “G” allele (Fig. 5b). It can be sur-
mised that the interaction of OsUGT and CHSI genes is vital for
the induction of flavonoid glycosides during germination.
Recently, Lam et al. (2022) demonstrated that rice mutants
lacking the CHS genes exhibited a significant decrease in flavone
and depleted tricin levels3®.

Multi-locus GWAS revealed more genes, such as OsGH3-13
(LOC_Os11g32520) and OsDjC75 (LOC_Os11g36520), which
both play a role in plant growth and development and stress
tolerance. However, a significant difference in naringenin chal-
cone levels among allelic variants were determined in OsGH3-13
and not in OsDjC75 gene (Supplementary Fig. 7c). Although
these genes can be associated with seed germination, their rela-
tionship with naringenin chalcone warrants further analysis.
Furthermore, downstream from naringenin chalcone, apigenin-7-
glucoside’s GWAS revealed genes associated with seed growth
and development such as OsFbox446 (LOC_Os08g34820) and
OsPRR37 (LOC_0Os07g49460). The OsFbox protein-encoding
genes modulate plant growth and various stages of seed
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development in rice3®. Analysis of the allelic variant in the OsF-
box446 gene revealed that allele “T” has significantly higher
apigenin-7-glucoside levels compared with allele “C”. In addition,
multi-locus GWAS revealed OsPRR37 as one of the significant
genes associated with apigenin-7-glucoside. This gene is known to
influence the heading date, enhance the plant yield, and increase
grain yield, with the relative expression of this gene is higher in
the first 16 h of seed germination*(. Correspondingly, the allelic
variant in the OsPRR37 gene containing “I” has significantly
higher apigenin-7-glucoside levels compared with allele “C”
(Supplementary Fig. 7). Although flavones like apigenin-7-
glucoside may have very specific functions in regulating plant
development through their action in cell wall synthesis, the roles
of these genes in the accumulation of Apigenin-7-Glucoside
necessitates further investigation.

Machine learning enabled for more systematic and accurate
genomic prediction of complex traits. The genetic markers that
were incorporated along with other phenotypes enhanced the
classification accuracy of the model. Furthermore, the prediction
speed increased, and the training time decreased when the genetic
markers were incorporated (Supplementary Data 2). The confu-
sion matrix without the genetic markers (Fig. 2) revealed lower
TPR for classifying the antioxidant component and capacity,
whereas the incorporation of the genetic markers increased the
TPR of Cluster 4, which consists of samples with high antioxidant
component and capacity from 44.4% to 100% (Fig. 5d). Similarly,
the TPR for Clusters 2 and 3 increased to 100%, while Cluster 1
increased from 84.4% to 90%. This approach may serve as a
baseline model for future analyses incorporating additional fea-
tures and algorithms that are anticipated to further improve the
accuracy of the classification. Furthermore, it will likely be
worthwhile to use these genetic markers for genomic predictions
associated with the antioxidant content and capacity of rice. The
result of this study provides important donor lines that can be an
essential source of multi-nutrients and alleviate hidden hunger,
especially in rice-consuming countries. Future studies combining
the current approach with the network-based analysis*! will likely
provide further insights into the underutilized yet readily avail-
able source of nutrition.

Methods

Genetic material and growth conditions. The diversity set
(n=293) of pigmented rice consisting of purple-colored
(n=18), variable-purple-colored (n=256), and red-colored
(n=16) varieties and light brown (n=3) were selected from
the International Rice Research Institute (IRRI) and sown during
the 2019 dry season at the experimental station of IRRI, Los
Banos, Laguna, the Philippines under well-maintained, irrigated
conditions (Supplementary Data 4). After harvest, the grains were
collected, air-dried until they held 14% moisture, and dehulled to
remove the inedible outer hull (Zaccaria PAZ-1/DTA testing rice
mill, Brazil).

Sample preparation and germination. Dormancy was broken
by incubating seeds at 50 °C for five days. Germination was
carried out following Caceres et al. (2017) with modifications#2.
Rice (50 grams) of each cultivar were washed with deionized
water, surface sterilized with sodium hypochlorite 0.1% at 28 °C
for 30 minutes, then rinsed with deionized water three times.
Rice was dispersed on a Petri plate and soaked in deionized
water (1:5, w/v) at 28 °C for 24 hours. Soaking water was dis-
carded, and seeds were spread on Petri plates lined with moist
laboratory paper and placed in the germination chamber
(HiPoint Seed Germination Chamber, SG-650) for 48 hours set
at 37 °C with a relative humidity of >90%. PRS was packed in

glassine bags and lyophilized for 72 hours at 1.1 bar (Christ
LCG LYO Chamber Guard, Germany). Freeze-dried PRS was
ground to a fine powder (using Mixer Mill MM400, Germany)
and kept at —20°C for further analysis.

Genetic analysis. The SNP marker data were generated by
genotype-by-sequencing (GBS) and screened based on >90% call
rate, locus homozygosity, and minor allele frequency (MAF) >
0.05. Genome-wide association studies (GWAS) based on the
mixed linear model for single-locus analysis and MLMM, BLINK,
and FarmCPU models for multi-locus analysis were conducted
using the R package of Genomic Association and Prediction
Integrated Tool (GAPIT)#3. Summary statistics was reported in
Supplementary Data 5 and 6. Furthermore, the population
structure estimation which includes the calculation of principal
component analysis and kinship matrixes were also conducted
using this software. The figures were then re-created using the
using the rMVP (A Memory-efficient, Visualization-enhanced,
and Parallel-accelerated tool) R package**. TASSEL 5.2.87 was
used to convert the genetic markers to numerical genotype, and
unknown entries were imputed using the Euclidean distance,
estimated from the evaluation of the five nearest neighbors.
Haplotype blocks were examined using the blocks function
implemented in PLINK 1.9, and the Haploview program was used
identify tag SNPs based on the threshold of the LD coefficient
(D) set to 0.84°.

SNPs associated with a P-value of <0.05 were considered
significant and were used to generate the haplotypes. Pairwise
comparisons between alleles were based on the Mann-Whitney
test and t-test using the “ggstatplot” package in R*0. Cytoscape
software was utilized to visualize the results of the GWAS.
The predicted protein-protein interactions involving CHSI
and OsUGT were determined using the STRING-DB
v10.5 software. The interaction network was supported by
experimental evidence, text-mining, co-expression data, and
curated database?’.

Mineral determination by using Inductively Coupled Plasma
Optical Emission spectroscopy (ICP-OES) analysis. For the
ICP-OES analysis of elements in rice, the ground whole grain rice
samples (0.600-0.625 g) were digested using 20 mL of 1% HNO;.
The resulting samples were then subjected to ICP-OES to
determine the mineral content, following the method previously
established for rice analysis*®. Ten elements (Ca, Na, Zn, Fe, Al
K, P, Cu, Mg, and Mo) were quantified across a total of 586 rice
samples, consisting of 293 germinated and 293 non-germinated
rice samples.

Spectrophotometric analysis for free, bound, and total phe-
nolics. The free and bound phenolic and flavonoid fractions
were determined using our previously optimized method*’.
Briefly, the pH differential method was used to estimate the
anthocyanin content, while the vanillin assay was used for
proanthocyanin content. The absorbance was measured using a
microplate reader (SPECTROstar Nano, BMG Labtech, Ger-
many). Phenolic content was expressed as mg of gallic acid
equivalents (GAE) per 100 g of sample, flavonoid, and proan-
thocyanin content as mg of catechin equivalents (CE) per 100 g
of sample, and anthocyanin content as cyanidin-3-O-glucoside
(Cyn-3-Glu) equivalents.

Extraction procedure for metabolomic analyses. Briefly, 50 mg
of fresh material was extracted with 1.2 mL 80% methanol.
Then, 2 uL were injected individually into the Acquity UPLC
system using an RP C8 column and analyzed by MS>. The
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samples were measured in positive and negative ionization
modes. Selected metabolites were quantified using standards,
and their concentrations were determined by following the
calibration curve with an excellent coefficient of determination
(at least r* = 0.99). This rigorous quantification process ensures
accurate and reliable measurement of the targeted metabolites
in the samples (Supplementary Data 7-10). The mass spectra
were acquired using an Orbitrap high-resolution mass spec-
trometer: Fourier-transform mass spectrometer (FT-MS) cou-
pled with a linear ion trap (LTQ) Orbitrap XL (ThermoFisher
Scientific, https://www.thermofisher.com. Chromatograms and
mass spectra were evaluated by using Chroma TOF 4.5 (Leco)
and TagFinder 4.2 software. Metabolite data correlation was
analyzed using the website MetaboAnalyst>! and Expressionist
Analyst 14.0.5 (Genedata, Basel, Switzerland) (https://www.
genedata.com/products/expressionist).

Metabolomic analysis, multivariate analyses, and mathematical
modeling of metabolite changes during germination. Multiple
multivariate statistical methods were employed to investigate the
variability of the metabolome pattern in germinated rice seeds. To
this end, principal component analysis (PCA), partial least squares-
discriminate analysis (PLS-DA), variable importance in projection
scores, heatmap, and pathway enrichment analysis for data visua-
lization were performed using MetaboAnalyst 4.0 software’l.
Classifications, clustering, and regression methods were performed
using R (Version 3.3.2, released 2016) and Python (version 3.11,
released 2022). AGNES Ward Clustering technique was employed
to cluster samples using the nutritional phenotypes. Several
machine learning techniques, including random forests and arti-
ficial neural networks, have been applied in the past to predict the
classification of rice based on its antioxidant components and
capacity®. In this study, random forest (RF) was used to classify the
multi-nutritional properties of PRS, as it showed good accuracy in
classifying antioxidant components®. The model was developed
using MatLab (R2021b) and utilized metabolite and colorimetric
data that had been filtered using a correlation filter with a tolerance
of r =+0.70. The data set (n =293) was split into training (70%)
and testing (30%) subsets.

Statistics and reproducibility. The spectrophotometric mea-
surements of phenolics, anthocyanins, and proanthocyanidins were
conducted in triplicates for validation. To ensure the reliability of
mineral concentration measurements in the top lines, duplicate
measurements were carried out. The Kruskal-Wallis test was
employed to assess significant differences between germinated and
non-germinated samples, as well as among samples based on their
color. This statistical analysis facilitated the precise identification of
any notable variations in mineral content among the rice samples.
In the case of metabolomic analysis, selected samples were dupli-
cated in every batch to ensure accuracy. Quality controls were
implemented for all assays to guarantee the precision and robust-
ness of the results. During model training, 10-fold cross-validation
was employed, where the training set was randomly divided into
training (90%) and validation (10%) sets. This process was repeated
ten times using ten different validation subsets from the original
training set>2. The accuracy of the model was calculated, along with
the true positive and negative rates of the classification process.
Statistically significant differences among data sets were established
using one-way analysis of variance (ANOVA) and Tukey’s post hoc
test (Supplementary Data 11 and 12).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability

Source data underlying Fig. 1 are provided in Supplementary Data 1. Source data for
Fig. 3d-f and Fig. 4a are provided in Supplementary Data 10. Source data for Fig. 5b are
provided in Supplementary Data 6. Additional data supporting the findings of this study
are available from the authors upon reasonable request.

Code availability
The workflow for the machine learning technique was compiled in Rhowell’s github:
https://github.com/Rhowell09/Machine-Learning-for-Rice-Nutritional-Components2.
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